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An identity for the trace of an exponential function of Kronecker products of 
matrices is proved. This identity plays an important role for the calculation of 
the grand potential of interacting Fermi systems. For the Hamiltonian H = 
~,i ni~ni+, where ni~ = c~f~ci,, (c+=: Fermi creation operator at the ith site with spin 
~r) we calculate the specific heat for different numbers of electrons per lattice 
site. Finally, we extend our calculations to find approximative solutions of the 
Hubbard model. 

In  the  p resen t  paper~we prove  an ident i ty  concern ing  the t race o f  an 
exponen t i a l  func t ion  o f  Kronecke r  p roduc t s  o f  matr ices .  Then we give an 
a p p l i c a t i o n  to Fe rmi  systems.  

Fi rs t  o f  all  let  us in t roduce  the nota t ion .  I denotes  the n x n uni t  matr ix .  
Let  X |  Y be  the  Kronecke r  p roduc t  ( tensor  p roduc t )  o f  the n x n matr ices  
X and  Y. t r  X denotes  the  t race of  the n x n mat r ix  X. Let [X, Y] be  the 
c o m m u t a t o r  (Lie bracke t )  of  the  n x n matr ices  X and  Y. We not ice  that  
i f  IX, Y] = 0, then  e x p ( X  + Y) -= e x p ( X )  e x p ( Y ) ,  where  e x p ( . )  denotes  the  
exponen t i a l  funct ion.  

Steeb and  Wi lhe lm (1981) proved  the fol lowing:  

Theorem 1. Let A1, A2, B1, B2 be real  n x n matr ices .  Then  

tr  e x p ( A l | 1 7 4 1 7 4  + I | 1 7 4 1 7 4  

-= (tr  e x p ( A l |  B1))(tr e x p ( A 2 |  B2)) (1) 

A n  ex tens ion  o f  the fo rmula  (1) is 

Theorem 2. Let A1, A 2 , . . . ,  AN, B1, B2, . . . ,  BN be  real  n • n matr ices .  
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Then 

tr e x p ( A l | 1 7 4  . . .  | 1 7 4 1 7 4  . . .  |  

+ I | 1 7 4  . ' '  | 1 7 4 1 7 4  . . .  |  

+ I Q I |  . . .  | 1 7 4 1 7 4  " "  |  

------ (tr exp(A1 | B1)Xtr exp(A2|  B2))" �9 �9 (tr exp(AN | BN)) (2) 

The purpose of this paper  is to give an extension of Theorem 1 and 
Theorem 2. 

Theorem 3. Let A1, A2, B1, B2, C be real n x n matrices. Assume that 

[31, C]  = [A2, C] = [B,, C] = [B2, C] = 0 

Then 

t r e x p ( A l | 1 7 4  + I Q A 2 Q I Q B 2 + C | 1 7 4 1 7 4  

+ I | 1 7 4  I | 1 7 4  I | 1 7 4 1 7 4  

---(tr exp (31 |  B I +  C |  I |  C)Xtr exp (32 |  B2+ C @ I +  I |  C ) )  

(3) 

The proof  is completely parallel to that of  Theorem 1 (Steeb and 
Wilhelm, 1981), where we have taken into account that C commutes with 
31, A2, B1, and BE. 

An extension of formula (3) is as follows: 

Theorem 4. Let A1, A2, . .  �9 AN, B1, B2,. �9  BN, C be real n x n matrices. 
Assume that [Ai, C]  = [Bi, C]  = 0 for i = 1 , . . . ,  N. Then 

t r exp  ( A 1 | 1 7 4  �9 �9 �9 | 1 7 4 1 7 4 1 7 4  �9 �9 �9 |  

+ I | 1 7 4  " ' "  | 1 7 4 1 7 4 1 7 4  ' ' "  |  

+ I | 1 7 4  . ' '  | 1 7 4 1 7 4 1 7 4  ' ' "  |  

+ C | 1 7 4  ' ' '  | 1 7 4 1 7 4 1 7 4  . . "  |  

+ I | 1 7 4  ' ' '  | 1 7 4 1 7 4 1 7 4  ' ' '  |  

+ I | 1 7 4  . . .  | 1 7 4 1 7 4 1 7 4  . . .  |  

N 

= H t r e x p ( A , | 1 7 4 1 7 4  (4) 
i = 1  

Before we describe the connection with Fermi systems let us consider 
a special case of  identity (4). Assume that A1 . . . . .  AN = BI . . . . .  BN. 
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We put A = A~ . . . . .  BN. Then the right-hand side of  ider~tity (4) takes 
the form 

(tr exp(A@ A + C @ ! + I |  C))  N (5) 

Since [A, C]  = 0, it follows that 

(tr exp(A@A + C @ I +  I |  C))  N 

=-( t r (exp(A|  e x p ( C |  I )  e x p ( I |  C))) u (6) 

Assume that the matrices A and C can be written as A = ~ X, C = bY, 
where a ~ i +, b ~ • and X 2= X, y2 = y. This means that X and Y are 
idempotent.  Then we obtain 

(tr exp(A@ A + C @ I + I |  C))  N 

--- ( t r ( I  | I + (e ~ - 1)(X | X ) ) ( I |  I + (e b - 1)( Y |  I ) )  

x ( I |  - 1 ) ( I |  y) ) )N (7) 

Using the identity (R | S) ( U | V) =- (R U) @ (SV) it follows that 

(tr e x p ( A |  + C |  I +  I |  C)) N 

=--(tr(I| +(eb- -1 ) (Y |  + I |  Y )+(e  ~ 1 7 4  

+ (e b - 1)2(Y| Y),+ (e a - 1)(e b - 1 ) ( X Y |  + X @ X Y )  

+ (e a - 1)(e b - 1)2(XY|  N (8) 

I f  we assume that I is the 2 x 2 unit matrix and 

then 

( t rexp(A|174174  N (10) 

Let us now describe the connection with Fermi systems. Fermi creation 
operators with spin up and spin down, respectively, have the matrix rep- 
resentation [Steeb (1977)] (i = 1 , . . . ,  N )  

ith place 

I 
c~ = ~z |  . .  @ ~ @ ( l ~ + ) @ t @ . . .  |  (11) 

2 N  times 

(i + N) th  place 

I 
c~= crz| " . .  |174189 +)| I | . . .  |  (12) 

) 

2 N  times 
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where I is the 2 x 2 unit matrix and 

crz=(10 _01) , or+=(0 0 20) (13) 

For the Fermi annihilation operators with spin up and down, respectively, 
we have to replace or+ by or_, where 

00) 
Consider now the Hamilton operator 

N N 

K = a Y, ci+,citc,+r b X (c~cit+ c~ci,) (15) 
i = 1  i = 1  

where a, b 6 ~. Since O-2z = I and 

1 1 (16) ~ 
we obtain 

and 

ith place 
I 

(i + N)th place 
I 

+ = 1 |  |  ~ ) | 1 7 4  |  

(17) 

(18) 

ith place (i + N)th place 

H = ~, tijc+,,@~ + U • ni,ni+ (20) 
i,i,o" i 

Consequently, the problem to calculate trexp(K) has been solved above 
[equation (10)]. We mention that a Wick theorem for the Hamiltonian (15) 
has been derived by Steeb (1976). 

Let us now give two applications. Thermodynamic properties of the 
Hubbard model 

c,+,c,,c,+,c,,=i|174174 ~)|174174174 ~)@I|174 
(19) 
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have been investigated by several authors. However, in most cases only the 
half-filled case (he = Ne/N -- 1, Ne = number  of  electrons, N = number  of  
lattice sites) has been considered. In our first application we neglect the 
kinetic part. The resulting Hamiltonian 

N 

H = U Y, ni,tni~, (21) 
i = l  

can be viewed as a simple model for an insulator. For a different number  
of  electrons per lattice site we calculate the thermodynamic quantities. In 
our second application we include the kinetic part. 

For the Hamiltonian (21) the grand thermodynamic potential per lattice 
site is given by 

12 1 
_ _ = _  ~ ln (1  +2  et3'~+e t3(2~'-u)) (22) 
N 

where ~ is the chemical potential. For the number  of  electrons per lattice 
site ne we find 

2(e m" + et3(2,~-v)) 
ne = 1 +2e  ~ + e/3(2t*- u) (23) 

where 0 -  ne - 2. Because of the Pauli principle /.~ --> oo as ne * 2. In the 
following we consider the range 0 < n, < 2. Furthermore we introduce the 
dimensionless quantities /2 = / ~ / U  a n d / 3 = / 3 U  (or T =  kT/U).  Equation 
(23) can be inverted to yield the chemical potential 

I~= l+f l - l ln{  (ne-1)+[(n~-l )2+n~(2-n~)e  fl]1/2} 
2 - n~ (24) 
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Fig. 1. D imens ion l e s s  chemica l  po ten t ia l  as a func t ion  of  n e f o r / 3  = 20 a n d / 3  = oo. 
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At ne = 1 we find /2 = 1/2 for all temperatures. In Figure 1 the chemical 
potent ial /~ is plotted as a function of ne for T = 0 and /3  = 20. For/~--> oo 
( T ~ 0 )  we find a step function. For 0 <  n~ < 1 the chemical potent ia l /2  is 
equal to 0. For 1 < ne < 2 the chemical potential is equal to 1. For /3  = 20 
we see that the function ~(n~) is approximatively a step function. Let 
U =  1 eV and /~=20; then T =  580 K. From the Helmholtz free energy 
F = 1~ + liNe, we obtain the dimensionless entropy per lattice site 

= In z - / 3  (2t~ e a'~ + (2t~ - 1) et~(2~-n)z - l  (25) 

where S : S~ N k  and 

z = 1 + 2 e a'~ + e a(2~-1) (26) 

For the dimensionless specific heat per lattice site we find 

Cv =/~[(g  + 1)(n~x-'  - 2 g  e a ) z - '  + n~( Zgx - II e e -a) (  Zgx) -~] 

+ ~2g(nex-~ - g(1 - nwr J ) z  -2 (27) 

where Co = C~/NkB, 

g : [(n, - 1) + x ] ( 2 -  ne) -a (28) 

and 

X = [ ( n e  -- 1) 2 +  h e ( 2  -- he)  e - a ]  1/2 (29 )  

In Figure 2 we have plotted the dimensionless specific heat per lattice site 
Cv a s  a function of  the dimensionless temperature T for different values 
of  n~, namely, ne =0.5, 0.9, 1, 1.1, and 1.5. At low temperature T we have 

[_~/~z e-a ,  for ne = 0.5, 1.5 (30) 
C = [1/~2 e-~/2, for ne = 1 

We see that there is no power law of the form Cv - 7"~. Notice that the 
specific heat for a Fermi gas at low temperature is linear in the temperature. 

Cv n ~ l  

. 4  
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�9 1 n~m5~ 1.5 
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Fig. 2. Dimensionless heat capacity (~v as a function of  the dimensionless temperature 2~ for 
n~ = 1, 1.1, 0.9, 1.5, 0.5. 
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In the range 0-<T-<0.05 the specific heat Cv is approximatively equal to 
zero. Let U = 1 eV then the temperature T related to T = 0.05 is T = 580 K. 
Furthermore the specific heat depends strongly on the number of electrons 
per lattice site. For ne = 1 the heat capacity takes the maximal values. At 
T = 0 . 2  we have Cv=0.45. Since Cv=Cv/NkB we obtain Co = 
3.74 J /mol  deg. At n e = 0.5 the number of electrons is too small in order 
contribute significantly to the heat capacity. For ne = 1.5 we find the same 
result. At first sight this result is surprising. The reason is that the Pauli 
principle comes into play. No more than two electrons can be placed at 
each lattice site. 

Let us now briefly describe how we can include the kinetic part. It is 
known that the Hubbard model can only be solved (i.e., the ground state 
energy can be calculated) for the linear chain with cyclic boundary condi- 
tions in the half-filled case. Thus we use a variational principle to find an 
upper bound for the grand thermodynamic potential. This can be done 
since the Hubbard model is bounded from below. For itinerant electron 
models for describing ferromagnetsim or antiferromagnetism in most cases 
we have U >> t. Consequently, the kinetic part can be treated as a per- 
turbation. 

The grand canonical density matrix, Wo, for a system with Hamiltonian 
H and number operator Ne at temperature 1//3 and chemical potential 
can be derived by specifying it to be that which minimizes the grand 
thermodynamic potential 

f~=Tr  W( H -  I~Ne) +~ Tr( W ln W) 

over all W. W is a linear, Hermitian Hilbert-Schmidt operator with unit 
trace. The condition that the first functional derivative vanishes leads 
uniquely to 

exp[-/3 ( n  - /zN~) ] 
Wo- Tr{exp[-/3 (H  -/zN~)]} 

The fact that Wo gives a minimum follows from the form of the second 
functional derivative at W = Wo. This operator is positive definite since Wo 
is positive definite. 

Now we start with 

~ _ + _  _+_ _+_ ~ - + _  ) exp -A1 cntcn~cn~c~- A2 ~,r162162 A3 r162 
n 

- d -  - - q -  - - d -  - - +  - 

T r  e x p  -A1 r r162 r -- A 3 Cn~fCn~ 
n 

(31) 
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where n runs over all lattice sites. The operators ~+, ~, and c +, c are connected 
by 

A = e l S t ~  e - i s  (32) 

where S is the Hermitian operator 

_ _ S = im, ~ ~----~ c"Tc'z el~ - 2 Cm~C,~ e -ioRm/ (33) 

The variational parameters are ,Xl, A2, A3, Q, and r The operator S is 
the Fourier transform of  

_  ke+ _ 

S = !  2~ k ~TCk~(?.k+Q,i--T k+Q~Ck,~ (34) 

where c ~  and Ck~ are the Fermi operators in Bloch representation. This 
means we assume cyclic boundary conditions. For practical calculations 
we perform the unitary transformation in the k space. Then with the help 
of the Fourier transform we calculate the rotated Hamiltonian in the Wannier 
representation. Finally we perform our trace calculation with the theorems 
given above. 

When we would like to study the case with t > U the starting point 
can be the trial density matrix 

exp{--t~ ~k [ El( k )c~,~ck, + E2( k ) ?.-k~ Ckj,] } 
Wt - (35) 

Tr exp{-fl ~ [ El(k)e-~tg.k, + E2(k)e~s 

together with the unitary transformation given by equations (32) and (34). 
The variational parameters are ~k, El(k), E2(k), and Q. 
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